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Abstract

Static mastermind is like normal mastermind, except that the code-

breaker must supply at one go a list of questions (candidate codes), the

answers to which must uniquely determine the secret code. We confirm the

minimum size list for some small values. Then we solve the game for up to

4 positions. In particular we show that for k sufficiently large the minimium

size of a list for 4 positions and k colours is k − 1.

1 Introduction

In the original version of the game Mastermind (trademark), there are two play-

ers, CodeBreaker and CodeSetter. The CodeSetter creates a secret code of 4 pegs,

each peg drawn from the same palette of 6 colours. The CodeBreaker must infer

the secret code by asking a series of questions. Each question is itself a candidate

code, and the response is two integers called Black and White. The value of Black

indicates in how many positions there is exact agreement, and the value of White

indicates how many colours are correct but in the wrong position. Another way

to put this is that the sum of Black and White is the maximum number of blacks

over all permutations of the guess code. In the actual game, the response is given

in the form of little pegs.

There is now an extensive literature on the game. This include papers on

exact values (e.g. [6] which has the solution to the original 6-colour 4-position

game), asymptotics (e.g. [2]), computer strategies based on calculation (e.g. [7])

and computer programs using artificial intelligence ideas (e.g. [4]).

A few authors have considered the question of what happens if it is required

that all questions be asked at one go, and then the responses must be enough

to uniquely determine the code. In line with Chvátal [2], we denote the mini-

mum number of codes needed g(n, k) for n positions and k colours. Recently,

Bogomolny and Greenwell [1, 5] called this variation static mastermind , and

calculated the value for a few small cases and provided some upper bounds in a

few more cases.
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In this paper we completely solve static mastermind for at most 3 positions,

and for 4 positions and sufficiently many colours. In particular, we show that

for k sufficiently large, g(4, k) = k − 1. By computer search we also find lower

bounds to match the bounds of [1] in almost all cases. In particular we confirm

that g(4, 6) = 6 (the original version).

2 Small Values

The folowing table contains the known values for small numbers of positions and

colours. The cases marked with a star were solved/given by Bogomolny and

Greenwell [1]. The cases marked with a circle are an upper bound from [1] with

a new matching lower bound. The remaining few entries are new.

C
ol

ou
rs

positions

2 3 4 5 6 7 8

2 2∗ 2∗ 3∗ 3◦ 4◦ 5◦ 5◦

3 2∗ 3∗ 3∗ 4◦ 4◦ ≤ 5∗

4 3∗ 4∗ 4◦ 5◦

5 4∗ 4∗ 5◦

6 4∗ 5◦ 6◦

7 5∗ 6◦ ≤ 7

8 6◦ 7 ≤ 8

9 6◦ 8

10 7◦ 9

Formulas are derived for 2 and 3 positions below. The remaining lower bounds

are produced by brute force search. The search space is reduced by exploiting

symmetry for the first few choices of codes (as used, for example, in [6]). For

example, it is well known that there are up to symmetry only 5 codes in the

original 64 game; after a code such as 1123 there are 130 codes up to symmetry.

Programs available from author. Even with all this symmetry, the original 64

game took several days running on a typical desktop PC.

The new upper bounds are the cases of 7 and 8 colours in the four-position

game. Example code lists are: 4624, 3756, 2113, 2425, 6334, 7167, 1542; and

1123, 1245, 4172, 5442, 3774, 6826, 7536, 8658.
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3 Asymptotics

There is a trivial lower bound for normal Mastermind based on the observation

that for n positions and k colours there are kn codes, and each question can

reduce the possibilities by a factor of at most
(

n+2

2

)

. The same bound holds for

static mastermind:

g(n, k) ≥ O

(

n log k

log n

)

.

It turned out that Erdős and Renyi [3] solved a problem similar to static

mastermind with 2 colours. (It was in the guise of a problem of determing which

of a set of coins are counterfeit, by using a scale which tells how many coins

are counterfeit in a collection placed on it.) Using similar probabilistic methods,

Chvátal [2] determined the order of g(n, k) if the number of positions is large

relative to the number of colours. In particular, for a fixed k, he showed that

g(n, k) ≤ O

(

n log k

log n

)

,

which matches the lower bound.

If the number of positions is fixed and the colors grows, then the trivial

information-theoretic bound above is of no use. Rather one can see that most

colours must be used in most positions so that for fixed n, g(n, k) ≥ O(k).

For n = k the trivial lower bound is linear, but we know of no decent upper

bound.

4 Two Positions

We use the standard convention of using as our colours the integers from 1 up

to k.

Theorem 1 For k colours and 2 positions, g(2, k) = d2k/3e.

In order to find a suitable set of d2k/3e guesses, consider the following. Let

T be the set of two guesses {13, 23}. It is easy to see that this set solves the

2-position 3-colour game.

But the set T has the added property that with any number of colours one can

determine from just the answers to T how many of each of the colours 1, 2 and

3 are present and in which positions they go, except that one cannot distinguish
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between the codes 1x and 11, or between 2x and 22, or between x3 and 33 where

x denotes another colour.

It follows that if k is a multiple of 3, that the set {13, 23, 46, 56, 79, 89, . . .}

works. To obtain a suitable list with k = 3r + 1, take the set for k − 1 and add

the code kk. For k = 3r + 2, take the set for k − 1 and add the code (k-1)k. For

example, for k = 5 use {13, 23, 44, 45}. It is easily checked that this set works.

Indeed, by the property of T described above, it suffices to check that the list

works for k ∈ {4, 5}.

For a lower bound, let S be a set of guesses that solves static mastermind for

2 positions and k colours. If one colour is absent from S, then every other colour

appears at least twice in S (if colour i is absent and colour j appears only once,

say in the first position, then one cannot separate ji and jj). Thus |S| ≥ k − 1.

So suppose every colour appears in S. Call a colour thin if it appears only

once in S; let t denote the number of thin colours. Now we observe that two

thin colours cannot occur in the same code: for, if ab is both the unique code

containing a and the unique code containing b, then one cannot separate aa and

bb. Thus t ≤ |S|.

On the other hand, by counting the total occurrences of all colours in S, it

follows that 2|S| ≥ t + 2(k − t) = 2k − t. Thus

2|S| ≥ 2k − t ≥ 2k − |S|,

so that |S| ≥ 2k/3, as required.

This completes the proof of Theorem 1.

5 Three Positions

We saw earlier that g(3, k) = k for 2 ≤ k ≤ 4.

Theorem 2 For k ≥ 5 colours and 3 positions, g(3, k) = k − 1.

The key idea in finding a suitable set of guesses is the following. Let T be

the set of three guesses {112, 322, 313}. Note that each number appears in two

codes, but three times in total, and the holes with the single colour are different

in each case.

We claim: given any code using arbitrary colours, one can determine from

just the answers to T how many of each of the colours 1, 2 and 3 is present and
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in which positions they go, except that one cannot distinguish between the codes

11x and 111, or between x22 and 222, or between 3x3 and 333.

This claim can be proved laboriously be a case analysis, or by letting a com-

puter try T in a game with 4 (or more) colours and seeing which codes are not

separated.

Now, by computer check, the set Q4 = {551, 525, 133, 443} works for 5 colours.

For k = 5 + 3r, we will add r versions of T , with the ith version using colours

5 + 3i − 2 to 5 + 3i. For example for n = 8, we add 667, 877, 868. By the above

claim, given any code, the colours with value 6 or more are completely determined

and placed. (To distinguish between the members of an exceptional pair, simpy

check whether any other code gets a positive response.) So it suffices to check

the system for 8 colours, as 11 or more colours requires the same properties of

Q4. This was done by computer.

Similarly: Q4 ∪ {612} works for 6 colours and augmented with r versions of

T works for 6 + 3r colours. Similarly: Q4 ∪ {612, 747} works for 7 colours and

augmented works for 7+3r colours. (All checked by computer.) So g(3, k) ≤ k−1

for k ≥ 5.

We need to prove a matching lower bound. We use a counting argument.

The key is the following idea.

Consider a set S of guesses that solves static mastermind for n positions and

k colours. Consider a grid of cells—rows labelled by colours, columns labelled

by holes—with a cross in a cell if that colour does not appear in that hole. For

a colour i, let max (i) denote the maximum number of times colour i is used in

any one guess of S. Let cross(i) denote the number of crosses in row i (that is,

the number of positions in which colour i never appears in S). Let occ(i) denote

the total number of times i is used in S.

Lemma 1

(a) There cannot be two rows and two columns such that there are crosses in all

4 cells.

(b) If colours i and j have crosses in the same column, then max (i)+max (j) ≥ n.

(c) In particular, for every pair of colours cross(i) + cross(j) ≤ n.

Proof.(a) Suppose crosses appear in the first two columns in both rows 1 and 2;

then one cannot distinguish 12. . . and 21. . . .

(b) Suppose max (i) + max (j) < n and rows i and j have crosses in the first

position. Fix any code C with at least max (i) of colour i and at least max (j) of
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colour j, leaving the first position blank. Consider a secret which is C with the

first position either colour i or colour j. The colour of the first position clearly

cannot affect the number of blacks for any guess in S. But the total number of

pegs for a guess is the sum of the overlaps in each colour, which is at most max (i)

for i and at most max (j) for j for any guess in S, and hence is also not affected

by the colour in the first position. That is, one cannot determine the colour in

the first position, a contradiction.

(c) If cross(i)+cross(j) > n, then there must be a column where both colours

have crosses, and so the result follows from part (b). qed

We will now establish the lower bound for n = 3. The main step is to show

that
k

∑

i=1

occ(i) ≥ 3k − 5.

From this it follows that |S| ≥ k−5/3 and hence, by integrality, that |S| ≥ k−1.

Consider the grid as in the above lemma. Define a colour i as deficient if

occ(i) < 3. Define a deficient colour as singled if it occurs exactly twice in S,

each time in a different hole. That is, occ(i) = 2 and max (i) = cross(i) = 1.

Define a deficient colour as doubled if max (i) = 2 (so occurs in unique code of

S).

Observation 1 If two deficient colours have crosses in the same column, then

one is doubled and one is not doubled.

Suppose two deficient colours i and j have crosses in the same position, say

the first one. By (b) of above lemma, max (i)+max (j) ≥ 3; so one of the colours,

say i, has max (i) = 2, and hence is doubled. If the other colour j is doubled,

then one cannot distinguish between iij and iji. This proves the observation.

Case 1: occ(i) = 0 for some colour i. Then by (c) of above lemma, every

other colour occurs at least 3 times. So sum of occ is at least 3k − 3.

Case 2: cross(i) ≤ 1 for all colours. Then every deficient colour is either

singled or doubled. By above observation there are at most 3 doubled and at

most 3 singled. Suppose there are three doubled colours, say 1, 2, 3 (necessarily

missing different columns). E.g. 11x, 2y2, z33. Then one cannot distinguish

between 132 and 213. So there are at most 2 doubled and at most 3 singled, and

so sum of occ is at least 3k − 5.
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Case 3: cross(i) = 2 for some colour i. By (c) of the above lemma, all other

colours have at most one cross and so again all other deficient colours are either

singled or doubled. Say i occurs only in the third position.

Let j be a deficient colour. If j misses the third position, then it cannot be

doubled (else cannot distinguish between iji and jii). If j misses the first (or

second) position, then by (b) of above lemma, j is doubled. So there are at most

3 other deficient colours, and the sum of occ is at least 3k−5, whence the result.

This completes the proof of Theorem 2.

6 Four Positions

In this section we show that:

Theorem 3 For 4 positions and k colours, g(4, k) = k − 1 for all k sufficiently

large.

6.1 Lower bound

Let S be a set of guesses that solves static mastermind for 4 positions and k

colours. We establish a lower bound for the total occurrences:

k
∑

i=1

occ(i) ≥ 4k − 7, (1)

which implies that |S| > k − 2.

Define a colour i as deficient if occ(i) < 4. For a deficient colour i, define

sav(i) = n − occ(i). The above inequality is implied by

k
∑

i=1

sav(i) ≤ 7.

Call a deficient colour singled if it occurs exactly thrice in S, each time in a

different code and each time in a different position. That is, sav(i) = max (i) =

cross(i) = 1. Call a deficient colour tripled if max (i) = 3. Otherwise it is

clumped .

By (b) of Lemma 1, there is at most one singled colour that misses any one

particular position.
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For a deficient colour, we say that it confuses two positions if any code of

S that contains that colour in the one position also has that colour in the other

position. Note that any clumped colour confuses at least one pair of positions; a

tripled colour confuses the three positions it is in.

It is clear that two colours cannot confuse the same two columns (as one

cannot determine which order the two colours appear in in those columns). But

we can go further. Define a graph G with vertex set the 4 positions. Two positions

are joined by a edge of colour i if that colour confuses those two positions.

Observation 2 The multigraph G cannot have a non-monochromatic cycle.

For example, if colour 1 confuses positions 1 and 2, colour 2 confuses positions

2 and 3, and colour 3 confuses positions 1 and 3, then S does not separate 123

and 312.

Now a series of cases.

Case 1: There is a colour with occ(i) = 0. Then every other colour has

occ(j) ≥ 4 and so savings is 4.

Case 2: There is a tripled colour. Say code is x111. Clearly no other tripled

colour (else repeated confusion). For any clumped colour, to avoid a repeated

confusion it must appear in pair involving the first position. But by lack of cycles

in G there can be at most one such colour. So savings at most 4 (from the singled

colours) plus 2 (from the other deficient colours).

Case 3: There is a colour with occ(i) = 1. Say i occurs in the first position.

Let j be another deficient colour. If j misses any other position than the first,

then by (b) of Lemma 1, it must be tripled, and we’ve handled that case. If j

misses the first position, then if it is singled it is unique, and if doubled then

unique by no cycles in G. So savings at most 4.

Case 4: There is colour with occ(i) = 2. Say i misses the first two columns.

Then at most two singled colours. If max (i) = 2, then at most one more edge in

G; if max (i) = 1 then no other crosses in the missing columns (by lack of tripled

colours). In either case savings at most 5.

Case 5: Every colour appears at least 3 times and is never tripled. Then

savings from singled colours is at most 4. Each clumped colour contributes one

edge to G; so at most 3 clumped colours and total savings at most 7.
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6.2 Upper bound

Define a design as a set of k guesses where:

(i) each guess contains distinct colours,

(ii) each colour occurs in every position,

(iii) no two colours appear together more than once.

Lemma 2 If n = 4 and T is a design, then the code is always determinable

except when the code has no repeat, and that case is detectable.

Proof.Fix any secret code C. Say it has g colours. The total number of pegs

achieved by T is then 4g. Hence T reveals g.

Define a contender as a colour all of whose occurrences receive positive

response. We say a contender is fake if it does not occur in C. Each colour in C

is a contender. Now, any fake contender appears in 4 different codes, necessarily

each time with a different colour of C (by property (iii) above). So it follows that

there cannot be a fake contender if g < 4, and so in that case the colours of C

are revealed (though not yet their multiplicities).

We say that a colour appears solo in a position, if there is no other contender

in the code of T that contains that colour in that position.

If g = 1 we are done. If g = 2 then, even ignoring the code where the two

colours are together if such a code exists, in each position at least one of the

colours appears solo, and whether it gets a Black or a White determines which

colour appears in that position.

So assume g = 3. One can determine the colour in a position if at least two

of the colours appear solo in that position. Further, one can determine the final

colour if all but one position is determined (look at the code with the Black peg

yet unaccounted for). So we are home unless there are two positions in doubt,

and thus the only problem situation is: 12xx and 31xx up to symmetry (and know

2 not in first position and 3 not in second).

Indeed, we are done unless we receive responses of 1 black 1 white for both

these guesses. To distinguish between 11xx and 32xx we use the fact that n ≤ 4.

For, in the remaining two columns, there is one colour missing, and so there

must one of that in the first two columns. This completes the proof of the

lemma. qed

So we can restrict our discussion to secret codes which have all distinct en-

tries. To have success here, one needs considerably more properties of the design.
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Consider a fake contender. It occurs in 4 codes, each time together with exactly

one colour from C. If ever one can determine one colour of C for definite, then

one can eliminate that colour and then by the argument used in the above lemma,

one can determine the remaining colours.

However, we are looking for a code with k − 1 guesses. This is a simple

extension.

Lemma 3 For n = 4, if a design T solves static mastermind on k colours, then

(a) so does the set T ′ with any one code omitted; and

(b) m copies of T work for km colours.

Proof.(a) We can reconstruct the response to the missing code! The design T

receives a total of 4 blacks over all the guesses. So the number of blacks for the

missing code can be inferred. Further, the total number of pegs that T receives

is a multiple of 4. So if the total number of pegs for T ′ is not a multiple of 4,

then the missing number is determined. If the total number of pegs for T ′ is a

multiple of 4, then the missing code had either 0 or 4 pegs. It is the latter exactly

when the total is 12 and every punctured colour is a contender. (We argued in

the proof of Lemma 2 that if the total pegs is not 16 that there can be no fake

contenders.)

(b) By definition, m copies of a design (with disjoint colour sets) again form

a design. So m copies work except possibly if all 4 colours are distinct. It is clear

that one can determine how many colours come from each copy. If from two or

more copies, one copy has at most two colours; and it is easy to show that one

can resolve those colours, and plug this information into the other copy. qed

Now we present our suitable design T34 on 34 colours. It can be checked by

computer that it solves static mastermind on 34 colours. One can easily verify

that it is a design. The hefty computation is that if C has separate colours, the

colours and their positions are determinable. We also have a design T35. Thus

one can construct a suitable set for any k large enough.
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1 –33–10–11

2 –23–17–15

3 –24–12–31

4 –12– 2 –10

5 – 3 –26–16

6 –18– 8 –23

7 –15– 6 –32

8 –28–22–24

9 –10–30–21

10–20– 7 –18

11– 8 – 4 –25

12–16–27–33

13–27–24– 4

14– 2 –34–29

15–31–29–20

16– 4 – 1 –19

17– 9 – 5 – 6

18– 1 – 3 – 2

19–29–33– 8

20–19–11– 5

21–17–19– 7

22– 5 –14–30

23–32–31– 1

24– 7 – 9 –26

25–22–15– 3

26–21–32–22

27–11–23–34

28–25–20–27

29– 6 –25–13

30–26–18–28

31–14–16– 9

32–34–28–17

33–13–21–14

34–30–13–12

The design T34 that solves static mastermind for 4 positions and 34 colours

7 Five or More Positions

Some properties of designs easily generalise to n = 5. But the following lemma

shows that more codes are required:

Lemma 4 For n ≥ 5 there is a constant εn such that g(n, k) ≥ (1+εn)k−O(1).

Proof.Let S be a set of guesses that solves static mastermind for n positions

and k colours. Consider the colours i with occ(i) ≤ n. Label such a colour as

clumped if it confuses two or more positions. Define such a colour as flat if

it occurs in each position and each time in a different code. Otherwise it is is

holey .

Since two colours cannot confuse the same pair of positions, the number of

clumped colours is at most O(n2). In fact, by Observation 2 it is not hard to

argue that the number and total savings from clumped colours is O(n).

Now if a colour is holey , since it has at most n occurrences, does not confuse

any positions and is not flat, it must miss a position. We argued before that for

two colours sharing a cross position, at least one must have max ≥ n/2. This

precludes two holey colours from having a cross in the same position, since one

would be clumped. So there are at most n holey colours, and the total savings

from them is at most n.
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Now, consider the flat colours. If S contains two codes such as 12. . . and

31. . . with all three colours 1, 2 and 3 flat, one cannot distinguish 11123. . . and

23123. . . . So for any flat colour, in all the n codes containing it, at most half

of the other colours can be flat. It follows that a constant proportion of the

positions in the codes of S are from colours with n+1 or more occurrences. This

proves the lemma. qed

8 Conclusion

We have provided solutions for small cases of static mastermind and provided

formulas for the case of 2, 3 or 4 positions. It remains to say something sensible

about the general case where the number of positions equals the number of

colours.
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