Entry template

 Social Learning Strategies Tournament

Social Learning Strategies Tournament

Template for Entries

(1) Details of principal/corresponding entrant:

	Name:
	Guenther Rosenbaum

	Address:
	XX

	E-mail:
	guenther.rosenbaum@t-online.de

	Telephone:
	XX …..

(2) Details of other entrants if submitting as a group (fill in as many as necessary; all group members must be listed):

	Name:
	Address (if different from above):
	E-mail:

	
	
	

(3) Please edit the following statement in line with your wishes:

I DO give permission for my/our names to be publicly associated with this tournament entry.

(4) Name of submitted strategy (please provide a short but descriptive name for your strategy e.g. “AlwaysCopy”): StabilityObserver

(5) Please provide a brief prose description of how your strategy is intended to work:

The strategy measures the stability of it´s environment by analysing it´s history

to get an idea about the payoff mutation rate.

If the stability is low (high payoff mutation rate) it does not help to learn more

and more acts, because their payoffs always changes. In this case the strategy exploites the best known act, which always changes.

If the stability is very high, the payoffs are changing only a few times during lifetime; in this case it is better, to observe time by time a new act, because otherwise it could be, that we exploite a bad act a long time.

If there is a stability of medium size, we observe new acts, if the payoff decreases (because of payoff mutation rate) below the upper quartil of all seen payoffs in the history.

The strategy starts with innovate, observe and then exploiting to have always some innovation within the population; at the start of the simulation observing at time 1 will not help, but after a short stabilisation time this will work.

(6) Strategy code (paste your Matlab or pseudo- code here):

Pseudocode (Java Code is attached, too. It was executed in a Java simulation environment):

Set

 maxActsFactor = 4;

 INNOVATE = -1;

 OBSERVE = 0;

1. if roundsAlive = 0 then INNOVATE

2. if roundsAlive = 1 then OBSERVE

3. if roundsAlive = 2 then EXPLOIT the highest ranked Act in myRepertoire (computed by method bestAct)

4. if roundsAlive > 2 then:

5. - calculate my last move (by method getLastMoveFromHistory)

6. - find out when I last EXPLOITed and get the payoff (computed by method getLastExploit)

7. - calculate the upper quartil of set of payoffs when EXPLOITing from myHistory (by method getUpperQuartilPayoff); that means: sort all different payoffs from history in an array and select the element at index (3 * arraysize - 1) / 4 ; (each value is allowed only once in the array.)

8. - count number of learned acts in myRepertoire (by method (getNumberOfLearnedActs)

9. - get the mean length of sequences of EXPLOITing one act with one payoff (by method getMeanExploitLength);

only sequences of length > 1 are used and OBSERVing/EXPLOITing in between is ignored.

F.e.: History:

 1 2 3 4 5 6 7 8 9 10

-1 0 7 7 7 0 7 7 7 7

 5 7 7 7 7 1 7 7 7 7

 2 8 8 8 8 1 8 9 9 3

 a a a a b b c

Here we have the sequence a with length 4 and b with length 2; the mean is 3.

Sequence c has length 1 and will be ignored.

(The value is always >= 2.0; default is 2.0, too)

 10. Now we calculate:

 If (getMeanExploitLength > 15) AND (roundsAlive mod 10 = 0)

 THEN OBSERVE

 11. if getLastMoveFromHistory = OBSERVE

 OR

 getLastExploit >= getUpperQuartilPayoff

 OR

 getNumberOfLearnedActs>=maxActsFactor * getMeanExploitLength

 THEN

 EXPLOIT the highest ranked Act in myRepertoire

 ELSE

 OBSERVE

(7) Strategy checklist – some things to think about regarding your entry; you should be able to answer YES to all these questions:

· Does my/our strategy work on the first round (i.e. history and repertoire matrices are empty; see section 3.5 in the Rules for Entry document)?
· Does my/our strategy only EXPLOIT acts that are already in its repertoire matrix (see section 3.3 in the Rules for Entry document)?
· If altering payoffs in the myRepertoire matrix, is it certain that only the payoffs are altered (see section 3.7 in the Rules for Entry document)?
· If submitting Matlab code, have you tested your strategy function with several different realistic sets of inputs?
· If submitting pseudo-code, have you asked a friend or colleague to work through your instructions with different realistic sets of inputs? Have they been able to successfully follow your instructions to work out which move to play in each case?
· Have you taken note of Rule 13 in the Rules for Entry document: “Entrants must be prepared to enter into a reasonable dialogue with the organisers to remove ambiguities from the entered strategy for the purposes of coding the simulations and improving computation efficiency”?
(8) Complete Java Sourcecode:

a) Interface for Strategies

package de.rosenbaumgames.javagames.cultaptation;

import java.util.ArrayList;

public interface ICultaptationStrategy

{

/**

 * @param roundsAlive input: lifetime 0...n

 * @param myRepertoire Act numbers and their value

 * @param myHistory history of all moves

 * round/move/act learnd or exploited/payoff learned or collected

 * @return -1 for innovate

 * 0 for observe

 * +x for exploit x

 */

public int cultStrategy(int roundsAlive,

 ArrayList <int[]> myRepertoire,

 ArrayList<int[]> myHistory);

public String toString();

}

b) StabilityObserver Implementation

package de.rosenbaumgames.javagames.cultaptation.Strategy;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Set;

import java.util.TreeSet;

import de.rosenbaumgames.javagames.cultaptation.ICultaptationStrategy;

/**

 * StabilityObserver: Cultaptation Contest

 * Guenther Rosenbaum

 * GERMANY

 *

 * 09. June 2008

 *

 */

public class Strat_StabilityObserver implements ICultaptationStrategy

{

 public int maxActsFactor = 4;

 public static final int INNOVATE = -1;

 public static final int OBSERVE = 0;

 public String toString()

 {

 return "Strat_StabilityObserver";

 }

 /**

 * This is the implementation of the central strategy. It calls some

 * subroutines, which are described below.

 */

 public int cultStrategy(int roundsAlive, ArrayList<int[]> myRepertoire,

 ArrayList<int[]> myHistory)

 {

 if (roundsAlive == 0)

 {

 return INNOVATE; // INNOVATE in round 0

 }

 else

 {

 if (roundsAlive == 1)

 {

 return OBSERVE; // OBSERVE in round 1

 }

 else

 {

 if (roundsAlive == 2)

 {

 return bestAct(myRepertoire)[0]; // EXPLOIT best action in round 2

 }

 else

 { // round > 2

 double MeanExploitLength = getMeanExploitLength(myHistory);

 if ((MeanExploitLength > 15) && (roundsAlive % 10 == 0))

 {
return OBSERVE;
 }
if ((getLastMoveFromHistory(myHistory) == OBSERVE)

 || (getLastExploit(myHistory)[1] >= getUpperQuartilPayoff(myHistory))

 || (getNumberOfLearnedActs(myRepertoire) >= maxActsFactor * MeanExploitLength))

 {

 return bestAct(myRepertoire)[0];

 }

 else

 {

 return OBSERVE; // OBSERVE in all other cases

 }

 }

 }

 }

 }

 /**

 * @return the last move from history

 */

 protected int getLastMoveFromHistory(ArrayList<int[]> myHistory)

 {

 if (myHistory.isEmpty())

 {

 return -2;

 }

 return myHistory.get(myHistory.size() - 1)[1];

 }

 /**

 * @return the size of my repertoire

 */

 protected int getNumberOfLearnedActs(ArrayList<int[]> myRepertoire)

 {

 return myRepertoire.size();

 }

 /**

 * @return the act with the highest payoff from my repertoire

 * if best act has payoff <= 0, return INNOVATE

 */

 protected int[] bestAct(ArrayList<int[]> myRepertoire)

 {

 int best = 0, inx = 0;

 for (Iterator iter = myRepertoire.iterator(); iter.hasNext();)

 {

 int[] element = (int[]) iter.next();

 if (element[1] > best)

 {

 best = element[1];

 inx = element[0];

 }

 }

 if (best <= 0)

 {

 return new int[] { INNOVATE, 0 };

 }

 else

 {

 return new int[] { inx, best };

 }

 }

 /**

 *

 * @return the last EXPLOIT from my history

 */

 protected int[] getLastExploit(ArrayList<int[]> myHistory)

 {

 for (int i = myHistory.size() - 1; i >= 0; i--)

 {

 int[] element = myHistory.get(i);

 if (element[1] > 0 && element[2] > 0)

 {

 return new int[] { element[2], element[3] };

 }

 }

 return new int[] { 0, 0 };

 }

 protected int getUpperQuartilPayoff(ArrayList<int[]> myHistory)

 {

 Set<Integer> t = new TreeSet<Integer>();

 for (Iterator iter = myHistory.iterator(); iter.hasNext();)

 {

 int[] element = (int[]) iter.next();

 if (element[1] > 0 && element[2] > 0)

 {

 t.add(element[3]);

 }

 }

 if (t.size() == 0)

 {

 return 0;

 }

 else

 {

 Integer[] a = t.toArray(new Integer[t.size()]);

 int i = a[(3 * t.size() - 1) / 4];

 return i;

 }

 }

 public static double getMeanExploitLength(ArrayList<int[]> myHistory)

 {

 boolean start = false;

 int sumLength = 0;

 int sumAnz = 0;

 int saveAct = 0, saveValue = 0;

 for (int i = 0; i < myHistory.size(); i++)

 {

 int[] element = myHistory.get(i);

 if (element[1] > 0 && element[2] > 0)

 {

 if (start && (saveAct == element[1])

 && (saveValue == element[3]))

 {

 sumAnz += 1;

 sumLength += 1;

 start = false;

 }

 if (saveAct == element[1] && (saveValue == element[3]))

 {

 sumLength += 1;

 }

 else

 {

 saveAct = element[1];

 saveValue = element[3];

 start = true;

 }

 }

 }

 if (sumAnz == 0)

 {

 return (2.0);

 }

 else

 {

 return (1.0 * sumLength) / sumAnz;

 }

 }

}

1

